International Journal of Head and Neck Surgery

Register      Login

VOLUME 9 , ISSUE 2 ( April-June, 2018 ) > List of Articles

REVIEW ARTICLE

Current Advances in Immuno-oncology for Head and Neck Cancer

Michael-John Devlin, Martin D Forster

Keywords : Cancer immunotherapy, Head and neck cancer, Head and neck squamous cell carcinoma, Immune checkpoint inhibitors, SCCHN,Cancer immunology

Citation Information : Devlin M, Forster MD. Current Advances in Immuno-oncology for Head and Neck Cancer. Int J Head Neck Surg 2018; 9 (2):78-86.

DOI: 10.5005/jp-journals-10001-1340

License: CC BY-NC 4.0

Published Online: 00-06-2018

Copyright Statement:  Copyright © 2018; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer globally, originating from the epithelial surface of the upper aerodigestive tract from the lips to the larynx. It commonly presents with locally advanced disease, with a recurrence rate of around 50% despite aggressive multimodality treatment involving surgery, radiotherapy and chemotherapy or EGFR inhibition as appropriate. Improvements in understanding the underlying cancer biology and its evolution within the complex interactions of the tumor microenvironment, there is gathering interest in and evidence for the use of immunomodulating agents in the management of HNSCC. Immune checkpoint inhibitors, primarily programmed cell death protein 1 (PD-1) inhibitors to date, which inhibit the inhibitory interaction between PD-1 and its ligand PD-L1, have demonstrated durable improvements in patient outcomes in advanced/metastatic HNSCC, with both nivolumab and pembrolizumab being granted FDA approval in 2016. There are numerous clinical trials ongoing exploring the role of checkpoint inhibitors both as single agents and in combination, administered with established modalities such as chemotherapy and radiotherapy, as well as alongside other novel immune modulators. These trials are not limited to advanced/ metastatic HNSCC, but also explore neoadjuvant or adjuvant settings. As studies complete and more data become available, immunotherapy agents are likely to have expanding roles within the treatment algorithms of HNSCC, and with greater biomarker development have the potential to further improve patient outcomes via a personalized therapy approach.


PDF Share
  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin, 2011. 61(2):69-90.
  2. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res, 1988;48(11):3282-3287.
  3. Mork J, Lie AK, Glattre E, Clark S, Hallmans G, Jellum E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med,
  4. 344(15):1125-1131.
  5. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen- Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med, 2010. 363(1):24-35.
  6. Weinberger PM, Yu Z, Haffty BG, Kowalski D, Harigopal M, Brandsma J, et al. Molecular classification identifies a subset of human papillomavirus--associated oropharyngeal cancers with favorable prognosis. J Clin Oncol, 2006. 24(5): p. 736-747.
  7. Cantrell SC, Peck BW, Li G, Wei Q, Sturgis EM, Ginsberg LE. Differences in imaging characteristics of HPV-positive and HPV-Negative oropharyngeal cancers: a blinded matched-pair analysis. AJNR Am J Neuroradiol, 2013;34(10):2005-2009.
  8. Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. The Lancet. 2008 May 17;371(9625):1695-1709.
  9. Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals of Oncology. 2017 Sep 21;28(suppl_12):xii18-32.
  10. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. British journal of cancer. 2011 Jun;105(1):93-103.
  11. Xu Q, Wang C, Yuan X, Feng Z, Han Z. Prognostic value of tumor-infiltrating lymphocytes for patients with head and neck squamous cell carcinoma. Translational oncology. 2017 Feb 1;10(1):10-16.
  12. de Ruiter EJ, Ooft ML, Devriese LA, Willems SM. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology. 2017 Nov 2;6(11):e1356148.
  13. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends in molecular medicine. 2007 Mar 1;13(3):108-116.
  14. Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical cancer research. 2012 Jun 1;18(11):3022-3029.
  15. Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PloS one. 2009 Jul 29;4(7):e6412.
  16. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. Journal of clinical oncology. 2009 Jan 10;27(2):186-192.
  17. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, et al. High numbers of tumor-infiltrating FOXP3- positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood, 2006;108(9): 2957-2964.
  18. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009 Jun 19;30(6):899-911.
  19. Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, et al. Two FOXP3+ CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nature medicine. 2016 Jun;22(6):679.
  20. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Annals of Oncology. 2016 May 20;27(8):1492-1504.
  21. Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI insight. 2016 Oct 20;1(17).
  22. Jebreel A, Mistry D, Loke D, Dunn G, Hough V, Oliver K, et al. Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer. The Journal of Laryngology & Otology. 2007 Mar;121(3):246-252.
  23. Choudhary MM, France TJ, Teknos TN, Kumar P. Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg, 2016;2(2):90-97.
  24. Freudlsperger C, Bian Y, Wise SC, Burnett J, Coupar J, Yang X, et al. TGF-ƒÀ and NF-ƒÈB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013 Mar;32(12):1549.
  25. Ferris RL, Immunology and Immunotherapy of Head and Neck Cancer. J Clin Oncol, 2015;33(29):3293-3304.
  26. Ferris RL, Hunt JL, Ferrone S. Human leukocyte antigen (HLA) class I defects in head and neck cancer. Immunologic research. 2005 Nov 1;33(2):113-133.
  27. Lopez-Albaitero A, Nayak JV, Ogino T, Machandia A, Gooding W, DeLeo AB, et al. Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. The Journal of Immunology. 2006 Mar 15;176(6):3402-3409.
  28. Mali SB. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol, 2015. 51(6):565-569.
  29. Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov, 2013. 12(2):130-146.
  30. Riley JL. PD-1 signaling in primary T cells. Immunol Rev, 2009;229(1):114-125.
  31. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017;545(7655):495-499.
  32. Zandberg DP, Strome SE. The role of the PD-L1: PD-1 pathway in squamous cell carcinoma of the head and neck. Oral oncology. 2014 Jul 1;50(7):627-632.
  33. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol, 2014;32(10):1020-1030.
  34. Ferris RL, Blumenschein Jr G, Fayette J, Guigay J, Colevas AD, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. New England Journal of Medicine. 2016 Nov 10;375(19):1856-1867.
  35. George S, Motzer RJ, Hammers HJ, Redman BG, Kuzel TM, Tykodi SS, et al. Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: a subgroup analysis of a randomized clinical trial. JAMA oncology. 2016 Sep 1;2(9):1179-1186.
  36. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. The Lancet Oncology. 2017 Mar 1;18(3):e143-152.
  37. Haddad RB, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Treatment beyond progression with nivolumab in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) in the phase 3 checkmate 141 study: A biomarker analysis and updated clinical outcomes. Annals of Oncology. 2017 Sep 1;28 (suppl_5).
  38. Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor activity of pembrolizumab in biomarkerunselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. Journal of Clinical Oncology. 2016 Sep 19;34(32):3838-3845.
  39. Cohen EE, Soulieres D, Le Tourneau C, Dinis J, Licitra LF, Ahn MJ, et al. Health-related quality of life (HRQoL) of pembrolizumab (pembro) vs standard of care (SOC) for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) in KEYNOTE-040. Annals of Oncology, 2017;28(5).
  40. Soulieres D. Updated survival results of the KEYNOTE-040 study of pembrolizumab vs standard-of-care chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma. in AACR. 2018 Chicago, USA.
  41. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun, 2016;7:10501.
  42. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. New England Journal of Medicine. 2014 Dec 4;371(23):2189-2199.
  43. Blank CU, Enk A. Therapeutic use of anti-CTLA-4 antibodies. International immunology. 2014 Jul 18;27(1):3-10.
  44. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England journal of medicine. 2015 Jul 2;373(1):23-34.
  45. Antonia SJ, López-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. The Lancet Oncology. 2016 Jul 1;17(7):883-895.
  46. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017 Dec 1;35(34):3851-3858.
  47. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman SE, Genevee C, Viegas-Pequignot EV, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. Journal of Experimental Medicine. 1990 May 1;171(5):1393-1405.
  48. Workman CJ, Vignali DA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol, 2005;174(2):688-695.
  49. Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, et al. LAG-3 regulates plasmacytoid dendritic cell homeostasis. The Journal of Immunology. 2009 Feb 15;182(4):1885-1891.
  50. Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, et al. LAG-3 expression defines a subset of CD4+ CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. The Journal of Immunology. 2010 Jun 1;184(11):6545-6551.
  51. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004 Oct 1;21(4):503-513.
  52. Bezu L, Gomes-da-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, et al. Combinatorial strategies for the induction of immunogenic cell death. Frontiers in immunology. 2015 Apr 24;6:187.
  53. Sridharan V, Margalit DN, Lynch SA, Severgnini M, Zhou J, Chau NG, et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. British journal of cancer. 2016 Jul;115(2):252.
  54. Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rödel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. British journal of cancer. 2014 Jan;110(2):501.
  55. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. New England Journal of Medicine. 2017 Nov 16;377(20):1919-1929.
  56. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer research. 2014 Oct 1;74(19):5458-5468.
  57. Powell SF, Gitau MM, Sumey CJ, Reynolds JT, Lohr M, McGraw S, et al. Safety of pembrolizumab with chemoradiation (CRT) in locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN).
  58. Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, Davidson HC, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen.specific T-cell immunity in head and neck cancer patients. Clinical Cancer Research. 2013 Apr 1;19(7):1858-1872.
  59. Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clinical cancer research. 2012 Jan 15;18(2):432-441.
  60. Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, et al. CTLA-4+ regulatory T cells increased in cetuximabtreated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer research. 2015 Jun 1;75(11):2200-2210.
  61. Jie HB, Srivastava RM, Argiris A, Bauman JE, Kane LP, Ferris RL. Increased PD-1+ and TIM-3+ TILs during cetuximab therapy inversely correlate with response in head and neck cancer patients. Cancer immunology research. 2017 May 1;5(5):408-416.
  62. Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti.PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer immunology research. 2015 Oct 1;3(10):1148-1157.
  63. Johnston PA, Sen M, Hua Y, Camarco D, Shun TY, Lazo JS, et al. High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay and drug development technologies. 2014 Feb 1;12(1):55-79.
  64. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Science translational medicine. 2015 Nov 18;7(314):314ra185.
  65. Pan Y, Zhou F, Zhang R, Claret FX. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo-and radio-sensitivity in nasopharyngeal carcinoma. PloS one. 2013 Jan 29;8(1):e54565.
  66. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral oncology. 2012 Dec 1;48(12):1220-1226.
  67. Nicholls DJ, Wiley K, Dainty I, MacIntosh F, Phillips C, Gaw A, et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. Journal of Pharmacology and Experimental Therapeutics. 2015 May 1;353(2):340-350.
  68. Chan LP, Wang LF, Chiang FY, Lee KW, Kuo PL, Liang CH. IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway. Oncotarget. 2016 Sep 20;7(38):61820.
  69. Ye J, Liu H, Hu Y, Li P, Zhang G, Li Y. Tumoral indoleamine 2, 3-dioxygenase expression predicts poor outcome in laryngeal squamous cell carcinoma. Virchows Archiv. 2013 Jan 1;462(1):73-81.
  70. Hamid O, Bauer TM, Spira AI, Olszanski AJ, Patel SP, Wasser JS, et al. Epacadostat plus pembrolizumab in patients with SCCHN: Preliminary phase I/II results from ECHO-202/ KEYNOTE-037.
  71. Prestwich RJ, Errington F, Ilett EJ, Morgan RS, Scott KJ, Kottke T, et al. Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clinical Cancer Research. 2008 Nov 15;14(22):7358-7366.
  72. Woller N, Knocke S, Mundt B, Gurlevik E, Struver N, Kloos A, et al. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. The Journal of clinical investigation. 2011 Jul 1;121(7):2570-2582.
  73. Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM, et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Molecular Therapy. 2015 Oct 1;23(10):1630-1640.
  74. Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte.macrophage colony-stimulating factor in the immunotherapy of melanoma. Journal for immunotherapy of cancer. 2014 Dec;2(1):11.
  75. Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy. 2015 Jul;7(6):611-619.
  76. Greig SL. Talimogene laherparepvec: first global approval. Drugs. 2016 Jan 1;76(1):147-154.
  77. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J clin Oncol. 2015 Sep 1;33(25):2780-2788.
  78. Miles B, Safran HP, Monk BJ. Therapeutic options for treatment of human papillomavirus-associated cancers-novel immunologic vaccines: ADXS11.001. Gynecologic oncology research and practice. 2017 Dec;4(1):10.
  79. Cohen EE, Moore KN, Slomovitz BM, Chung CH, Anderson ML, Morris SR, et al. Phase I/II study of ADXS11-001 or MEDI4736 immunotherapies alone and in combination, in patients with recurrent/metastatic cervical or human papillomavirus (HPV)-positive head and neck cancer. Journal for immunotherapy of cancer. 2015 Nov 4;3(Suppl 2).
  80. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFƒÀ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018 Feb;554(7693):544.
  81. Seiwert TY, Burtness B, Weiss J, Eder JP, Yearley J, Murphy E, Nebozhyn M, McClanahan T, Ayers M, Lunceford JK, Mehra R. Inflamed-phenotype gene expression signatures to predict benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ head and neck cancer patients. J Clin Oncol, 2015:33(15).
  82. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016 Mar 24;165(1):35-44.
  83. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML. Mutational landscape determines sensitivity to PD-1 blockade in non.small cell lung cancer. Science. 2015 Apr 3;348(6230): 124-128.
  84. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017 Nov 2;171(4): 934-949.
  85. Haddad RI, Seiwert TY, Chow LQ, Gupta S, Weiss J, Gluck I, et al. Genomic determinants of response to pembrolizumab in head and neck squamous cell carcinoma (HNSCC). J Clin Oncol, 2017:35(15).
  86. Rieke DT, Ochsenreither S, Klinghammer K, Seiwert TY, Klauschen F, Tinhofer I, et al. Methylation of RAD51B, XRCC3 and other homologous recombination genes is associated with expression of immune checkpoints and an inflammatory signature in squamous cell carcinoma of the head and neck, lung and cervix. Oncotarget. 2016 Nov 15;7(46):75379.
  87. Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clinical cancer research. 2015 Feb 15;21(4):870-881.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.