International Journal of Head and Neck Surgery

Register      Login

VOLUME 10 , ISSUE 4 ( October-December, 2019 ) > List of Articles

Special Issue 4: Invited Article

Anatomy of Obstructive Sleep Apnea: An Evolutionary and Developmental Perspective

Carlos Torre, Alberto Ramos, Salim Dib, Alexandre Abreu, Alejandro Chediak

Keywords : Airway collapse, Craniofacial development, Evolution, Nasal breathing, Obstructive sleep apnea, Snoring, Upper airway

Citation Information : Torre C, Ramos A, Dib S, Abreu A, Chediak A. Anatomy of Obstructive Sleep Apnea: An Evolutionary and Developmental Perspective. Int J Head Neck Surg 2019; 10 (4):98-101.

DOI: 10.5005/jp-journals-10001-1382

License: CC BY-NC 4.0

Published Online: 01-12-2014

Copyright Statement:  Copyright © 2019; The Author(s).


Aim: Our goal was to present obstructive sleep apnea (OSA) from evolutionary and developmental perspective by highlighting the different elements that predispose humans to develop this condition. Background: The development of complex speech and bipedalism were some of the adaptations that resulted in changes that predispose humans as a species to the development of OSA. Laryngeal descent and regression of the maxillomandibular complex were some of the changes that took place and that led to a smaller and more collapsible airway. During development, reduction of the posterior airway space and suboptimal growth of the maxillomandibular complex further increase the risk of developing OSA as adults. Review results: Treatment of OSA should be a continuous effort that starts early in childhood through the establishment of adequate nasal breathing. Chronic mouth breathing during active craniofacial development of a child may result in anatomical changes that directly affect the airway. Different strategies may be applied to optimize nasal breathing and that allow continuous interaction between the nasomaxillary complex and the mandible during development. Ultimately, this will guide the growth of the entire facial-skeletal complex in a forward and horizontal orientation. This will result in a lower risk of developing a narrow and collapsible airway later in life. Conclusion: Treatment of OSA should be a continuous effort to establish adequate nasal breathing early in life that will maximize the growth and development of the facial-skeletal complex and the upper airway. In order to accomplish this, multiple strategies need to be considered and possibly combined. Clinical significance: OSA is a common disorder characterized by repetitive upper airway narrowing during sleep with resulting hypoxemia, hypercapnia, sympathetic activation, and sleep disruption. Early intervention in children suspected to have OSA is essential to reduce the risk of developing more severe OSA as adults.

  1. Young T, Palta M, Dempsey J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993;328: 1230–1235. DOI: 10.1056/NEJM199304293281704.
  2. Yaggi HK, Concato J, Kernan WN, et al. Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 2005;353:2034–2041. DOI: 10.1056/NEJMoa043104.
  3. Shahar E, Whitney CW, Redline S, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;163(1):19–25. DOI: 10.1164/ajrccm.163.1.2001008.
  4. Eckert D, White D, Jordan A, et al. Defining Phenotypic Causes of Obstructive Sleep Apnea. Identification of Normal Therapeutic Targets. Am J Respir Crit Care Med 2013;188:996–1004. DOI: 10.1164/rccm.201303-0448OC.
  5. Edwards BA, Wellmam A, Sands SA, et al. Obstructive Sleep Apnea in Older Adults Is a Distinctly Different Pathological Phenotype. Sleep 2014;37(7):1227–1236. DOI: 10.5665/sleep.3844.
  6. Davidson T. The Great Leap Forward: the anatomic basis for the acquisition of speech and obstructive sleep apnea. Sleep Med 2003;4(3):185–194. DOI: 10.1016/S1389-9457(02)00237-X.
  7. Negus V. The comparative anatomy and physiology of the respiratory tract in relation to clinical problems. Ann R Coll Surg Engl 1955;16(5):281–304.
  8. Lieberman D, McCarthy R, Hiiemae K. Ontogeny of postnatal hyoid and larynx descent in humans. Arch Oral Biol 2001;46(2):117–128. DOI: 10.1016/S0003-9969(00)00108-4.
  9. Barsh L. The Origin of Pharyngeal Obstruction during Sleep. Sleep Breath 1999;3(1):17–22. DOI: 10.1007/s11325-999-0017-4.
  10. Hendricks J, Kline L, Kovalski R. The English bulldog: a natural model of sleep-disordered breathing. J Appl Physiol 1985;63(4):1344–1350. DOI: 10.1152/jappl.1987.63.4.1344.
  11. Falk D. Comparative anatomy of the larynx in man and the chimpanzee: implications for language in Neanderthal. Am J Phys Anthr 1975;43(1):123–132. DOI: 10.1002/ajpa.1330430116.
  12. Miles A. The evolution of dentitions in the more recent ancestors of man. Proc R Soc Med 1972;65(4):396–399.
  13. Trosman I. Childhood obstructive sleep apnea syndrome: a review of the 2012 American Academy of Pediatrics guidelines. Pediatr Ann 2013;42(10):195–199. DOI: 10.3928/00904481-20130924-09.
  14. Huang Y, Guilleminault C, Lee L. Treatment outcomes of adenotonsillectomy for children with obstructive sleep apnea: a prospective longitudinal study. Sleep 2014;37(1):71–76. DOI: 10.5665/sleep.3310.
  15. Guilleminault C, Huang Y, Quo S. Teenage sleep-disordered breathing: recurrence of syndrome. Sleep Med 2013;14(1):37–44. DOI: 10.1016/j.sleep.2012.08.010.
  16. Guilleminault C, Partinen M, Praud JP, et al. Morphometric facial changes and obstructive sleep apnea in adolescents. J Pediatr 1989;114(6):997–999. DOI: 10.1016/S0022-3476(89)80447-0.
  17. Souki BQ, Lopes PB, Pereira TB, et al. Mouth breathing children and cephalometric pattern: does the stage of dental development matter? Int J Pediatr Otorhinolaryngol 2012;76(6):837–841. DOI: 10.1016/j.ijporl.2012.02.054.
  18. Linder-Aronson S. Dimensions of face and palate in nose breathers and habitual mouth breathers. Odontol Rev 1969;14: 187–200.
  19. Liu SYC, Huon LK, Powell NB, et al. Lateral Pharyngeal Wall Tension After Maxillomandibular Advancement for Obstructive Sleep Apnea Is a Marker for Surgical Success: Observations From Drug-Induced Sleep Endoscopy. J Oral Maxillofac Surg 2015 Aug;73(8):1575–1582. DOI: 10.1016/j.joms.2015.01.028.
  20. Camacho M, Liu S, Certal V, et al. Large maxillomandibular advancements for obstructive sleep apnea: An operative technique evolved over 30 years. J Craniomaxillofac Surg 2015;43(7):1113–1118. DOI: 10.1016/j.jcms.2015.05.015.
  21. Georgalas C. The role of the nose in snoring and obstructive sleep apnoea: An update. Eur Arch Otorhinolaryngol 2011;268(9):1365–1373. DOI: 10.1007/s00405-010-1469-7.
  22. Fitzpatrick M, McLean H, Urton A, et al. Effect of oral or nasal breathing route on upper airway resistance during sleep. Eur Respir J 2003;22:827–832. DOI: 10.1183/09031936.03.00047903.
  23. Timms D. Rapid maxillary expansion in the treatment of nasal obstruction and respiratory disease. Ear Nose Throat J 1987 Jun;66(6):242–247.
  24. Gelardi M, Carbonara G, Maffezzoni E, et al. Regular CPAP utilization reduces nasal inflammation assessed by nasal cytology in obstructive sleep apnea syndrome. Sleep Med 2012;13(7):859–863. DOI: 10.1016/j.sleep.2012.04.004.
  25. Akbay E, Cokkeser Y, Yilmaz O, et al. The relationship between posterior septum deviation and depth of maxillopalatal arch. Auris Nasus Larynx 2013;40(3):286–290. DOI: 10.1016/j.anl.2012. 07.016.
  26. Camacho M, Certal V, Abdullatif J. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Sleep 2015;38(5):669–675. DOI: 10.5665/sleep.4652.
  27. Vargervik K, Harvold E. Experiments on the interaction between orofacial function and morphology. Ear Nose Throat J 1987;66(5): 201–208.
  28. Timms DJ, Vero D. The relationship of rapid maxillary expansion to surgery with special reference to midpalatal synostosis. Br J Oral Surg 1981;19(3):180–196. DOI: 10.1016/0007-117X(81)90003-2.
  29. Moeller J. Orofacial myofunctional therapy: why now? Cranio 2012;30(4):235–236. DOI: 10.1179/crn.2012.035.
  30. Guilleminault C, Huang Y, Monteyrol PJ, et al. Critical role of myofascial reeducation in pediatric sleep-disordered breathing. Sleep Med 2013;14(6):518–525. DOI: 10.1016/j.sleep.2013.01.013.
  31. Pirelli P, Saponara M, Guilleminault C. Rapid maxillary expansion in children with obstructive sleep apnea syndrome. Sleep 2004;27(4):761–766. DOI: 10.1093/sleep/27.4.761.
  32. Pirelli P, Saponara M, Guilleminault C. Rapid maxillary expansion (RME) for pediatric obstructive sleep apnea: a 12-year follow-up. Sleep Med 2015;16(8):933–935. DOI: 10.1016/j.sleep.2015.04.012.
  33. Camacho M, Chang E, Song S. Rapid maxillary expansion for pediatric obstructive sleep apnea: A systematic review and meta-analysis. Laryngoscope 2017;127(7):1712–1719. DOI: 10.1002/lary.26352.
  34. Buck L, Dalci O, Darendeliler M, et al. Volumetric upper airway changes after rapid maxillary expansion: a systematic review and meta-analysis. Eur J Orthod 2017 Oct;39(5):463–473. DOI: 10.1093/ejo/cjw048.
  35. Zambon C, Ceccheti M, Utumi E, et al. Orthodontic measurements and nasal respiratory function after surgically assisted rapid maxillary expansion: an acoustic rhinometry and rhinomanometry study. Int J Oral Maxillofac Surg 2012 Sep;41(9):1120–1126. DOI: 10.1016/j.ijom.2011.12.037.
  36. Guilleminault C, Monteyrol P, Huynh N. Adeno-tonsillectomy and rapid maxillary distraction in pre-pubertal children, a pilot study. Sleep Breath 2011;15(2):173–177. DOI: 10.1007/s11325-010-0419-3.
  37. Kim J, Guilleminault C. The nasomaxillary complex, the mandible, and sleep-disordered breathing. Sleep Breath 2011;15(2):185–193. DOI: 10.1007/s11325-011-0504-2.
  38. Huan Y, Quo S, Berkowski J. Short Lingual Frenulum and Obstructive Sleep Apnea in Pre-Pubertal Children. Int J Pediatr Res 2015;1:1.
  39. Yoon A, Zaghi S, Weitzman R. Toward a functional definition of ankyloglossia: validating current grading scales for lingual frenulum length and tongue mobility in 1052 subjects. Sleep Breath 2017 Sep;21(3):767–775. DOI: 10.1007/s11325-016-1452-7.
  40. Levrinia L, Lorussoa P, Caprioglioa A. Model of oronasal rehabilitation in children with obstructive sleep apnea syndrome undergoing rapid maxillary expansion: Research review. Sleep Sci 2014;7(4):225–233. DOI: 10.1016/j.slsci.2014.11.002.
  41. Michels Dde S, Rodrigues Ada M, Nakanishi MM, et al. Nasal involvement in obstructive sleep apnea syndrome. Int J Otolaryngol 2014;2014:717419. DOI: 10.1155/2014/717419.
  42. Ohayon M, Carskadon M, Guilleminault C, et al. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 2004 Nov;27(7):1255–1273. DOI: 10.1093/sleep/27.7.1255.
  43. Fitzpatrick MF, Driver HS, Chatha N, et al. Partitioning of inhaled ventilation between the nasal and oral routes during sleep in normal subjects. J Appl Physiol 2003;94(3):883–890. DOI: 10.1152/japplphysiol.00658.2002.
  44. Dantas D, Mauad T, Silva L. The extracellular matrix of the lateral pharyngeal wall in obstructive sleep apnea. Sleep 2012;35(4): 483–490. DOI: 10.5665/sleep.1730.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.